Hopf-bifurcation in Systems with Spherical Symmetry Part I : Invariant Tori

نویسندگان

  • Christian Leis
  • Bernold Fiedler
چکیده

A Hopf-bifurcation scenario with symmetries is studied. Here, apart from the well known branches of periodic solutions, other bifurcation phenomena have to occur as it is shown in the second part of the paper using topological arguments. In this rst part of the paper we prove analytically that invariant tori with quasiperiodic motion bifurcate. The main methods used are orbit space reduction and singular perturbation theory. 1991 Mathematics Subject Classi cation: 58F14, 34C20, 57S15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quasi-Periodic Reversible Hopf bifurcation

We consider the perturbed quasi-periodic dynamics of a family of reversible systems with normally 1:1 resonant invariant tori. We focus on the generic quasi-periodic reversible Hopf bifurcation and address the persistence problem for integrable quasiperiodic tori near the bifurcation point. Using kam theory, we describe how the resulting invariant tori of maximal and lower dimensions are parame...

متن کامل

Hopf Bifurcation from Relative Periodic Solutions; Secondary Bifurcations from Meandering Spirals

We consider nonresonant and weakly resonant Hopf bifurcation from periodic solutions and relative periodic solutions in dynamical systems with symmetry. In particular, we analyse phase-locking and irrational torus flows on the bifurcating relative tori. Results are obtained for systems with compact and noncompact symmetry group. In the noncompact case, we distinguish between bounded and unbound...

متن کامل

Survey on dissipative KAM theory including quasi-periodic bifurcation theory

Kolmogorov-Arnol’d-Moser Theory classically was mainly developed for conservative systems, establishing persistence results for quasi-periodic invariant tori in nearly integrable systems. In this survey we focus on dissipative systems, where similar results hold. In non-conservative settings often parameters are needed for the persistence of invariant tori. When considering families of such dyn...

متن کامل

Branches of Stable Three{tori Using Hamiltonian Methods in Hopf Bifurcation on a Rhombic Lattice

This paper uses Hamiltonian methods to nd and determine the stability of some new solution branches for an equivariant Hopf bifurcation on C 4. The normal form has a symmetry group given by the semi-direct product of D2 with T 2 S 1. The Hamiltonian part of the normal form is completely integrable and may be analyzed using a system of invariants. The idea of the paper is to perturb relative equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014